This lecture is about Polarimetry of Exoplanets.

Exoplanets or ‘extrasolar planets’ are planets that orbit other stars than the Sun.

Here is a beautiful artist’s impression of an exoplanet in orbit around 2 red dwarf stars.

For centuries, people have looked up in the sky and wondered whether there were other worlds like the Earth.

The other planets in the Solar System are ...
A historical note on exoplanets

Christiaan Huygens (Cosmotheoros, 1698):

‘What prevents us from believing that, just like our own Sun, each of those stars or Suns, is surrounded by planets, each in turn surrounded by their own moons?’

‘We are far from observing planets around the stars because they are very faint, and because their orbits are indistinguishable from the observed spot of starlight.’
Why are exoplanets so difficult to detect?

A planet is extremely faint compared to its parent star.
Why are exoplanets so difficult to detect?

A planet is located very close to its parent star as seen from afar.

\[\delta \approx \frac{D}{d} \text{ arcsec (with } D \text{ in AU and } d \text{ in pc)} \]

By definition: 1 AU at 1 pc is seen under an angle of 1 arcsec.

1 pc = 1 parsec (parallax second) = 3.262 light years.

Moon is half a degree on the sky: 30 arcminutes = 30\times60 = 1800 arcseconds.

Best seeing: 0.5''
Why are exoplanets so difficult to detect?

A sharp picture of a solar-type star using an 8-m, ground-based telescope with adaptive optics (Gemini North):
1995: First exoplanet around solar-type star!

- Parent star: 51 Peg (G5 star)
- Distance to Solar System: 15.36 pc
- Planet properties:
 - $D = 0.05$ AU
 - $P = 4.2$ days
 - $M_p \sin i = 0.5 M_{\text{Jup}}$

Mayor & Queloz [1995]
All exoplanets found to date

The 889 exoplanets found with different detection methods:

All found through indirect methods ... so we know little about their properties ...
A nice plot of the currently known exoplanets

A bubble chart showing the relative sizes of the known exoplanets, those in the same system grouped together.

- **Green**: maybe ok for life
- **Blue**: too cold for life
- **Red**: too hot for life
- **Gray**: no info

Plot from the Open Exoplanet Catalogue
Next step: direct detections

With a direct detection, you measure either the thermal radiation of a planet or the starlight that is reflected by the planet:

These are hot planets!
And they are really far out!
Not suitable for life!
Next step: direct detections

A very recent (June 3, 2013) direct detection! This exoplanet would be the lightest imaged so far:

Observed in the IR with NACO/VLT [Rameau et al., 2013]. This planet has a mass of about 4-5 Jupiters, and orbits its star at about 56 AU.

These are hot planets!
And they are really far out!
Not suitable for life!
Directly detecting the Solar System:

A sharp picture of a solar-type star using an 8-m, ground-based telescope with adaptive optics (Gemini North):
Why is reflected starlight polarized?

Starlight that is reflected by (exo)planets is usually polarized because it has been:

- scattered by gaseous molecules
- scattered by aerosol and/or cloud particles
- reflected by the surface (if there is any)
The accuracy that is needed to detect the polarized signal of an exoplanet depends strongly on the background signal of starlight and, e.g. exo-zodiacal light:

In the following, I will concentrate on the polarized flux of a planet, spatially resolved from its star!
Polarimetry for exoplanet detection
... confirmation
... characterization

The degree of polarization P of reflected starlight depends on*:

- The composition and structure of the planet’s atmosphere
- The reflection properties of the planet’s surface
- The wavelength λ of the light
- The planetary phase angle α

* P does not depend on: planet’s size, distance to the star, distance to the observer!
Flux and polarization of reflected starlight

The Stokes vector πF of the reflected starlight is given by:

$$\pi F(\lambda, \alpha) = \frac{r^2}{d^2} \frac{1}{4} S(\lambda, \alpha) \pi F_0(\lambda)$$

With:
- πF the flux vector arriving at the observer at a distance d
- πF_0 the flux vector of starlight arriving at the planet with radius r
- S the planetary scattering matrix

We assume that the incident starlight is unidirectional!
The equation is thus not applicable for extremely close-in exoplanets!
Flux and polarization of reflected starlight

The Stokes vector $\mathbf{πF}$ of the reflected starlight is given by:

$$\mathbf{πF}(\lambda, \alpha) = \frac{r^2}{d^2} \frac{1}{4} \mathbf{S}(\lambda, \alpha) \mathbf{πF}_0(\lambda)$$

Written out:

$$\begin{bmatrix}
\pi F(\lambda, \alpha) \\
\pi Q(\lambda, \alpha) \\
\pi U(\lambda, \alpha) \\
\pi V(\lambda, \alpha)
\end{bmatrix} = \frac{r^2}{d^2} \frac{1}{4} \begin{bmatrix}
S_{11}(\lambda, \alpha) & S_{12}(\lambda, \alpha) & S_{13}(\lambda, \alpha) & S_{14}(\lambda, \alpha) \\
S_{21}(\lambda, \alpha) & S_{22}(\lambda, \alpha) & S_{23}(\lambda, \alpha) & S_{24}(\lambda, \alpha) \\
S_{31}(\lambda, \alpha) & S_{32}(\lambda, \alpha) & S_{33}(\lambda, \alpha) & S_{34}(\lambda, \alpha) \\
S_{41}(\lambda, \alpha) & S_{42}(\lambda, \alpha) & S_{43}(\lambda, \alpha) & S_{44}(\lambda, \alpha)
\end{bmatrix} \begin{bmatrix}
\pi F_0(\lambda) \\
\pi Q_0(\lambda) \\
\pi U_0(\lambda) \\
\pi V_0(\lambda)
\end{bmatrix}$$
Flux and polarization of reflected starlight

In the following, we assume unpolarized incident starlight:
\[\pi F_0(\lambda) = \pi F_0(\lambda) [1, 0, 0, 0] \]

Written out:
\[\pi \begin{bmatrix} F(\lambda, \alpha) \\ Q(\lambda, \alpha) \\ U(\lambda, \alpha) \\ V(\lambda, \alpha) \end{bmatrix} = \frac{r^2}{d^2} \frac{1}{4} \begin{bmatrix} S_{11}(\lambda, \alpha) \\ S_{21}(\lambda, \alpha) \\ S_{31}(\lambda, \alpha) \\ S_{41}(\lambda, \alpha) \end{bmatrix} \pi F_0(\lambda) \]

\[\rho(\lambda, \alpha) = \frac{\sqrt{S_{21}^2(\lambda, \alpha) + S_{31}^2(\lambda, \alpha) + S_{41}^2(\lambda, \alpha)}}{S_{11}(\lambda, \alpha)} \]
The planetary scattering plane

The planetary scattering plane (through star, planet, and observer) is the reference plane for the polarized fluxes:

If the planet is mirror-symmetric with respect to the reference plane:
• the reflected starlight is linearly polarized, not circularly
• the direction of polarization is perpendicular or parallel to the plane!
Mirror-symmetric planets

If the planet is mirror-symmetric with respect to the reference plane, U and V equal zero!

Thus:

$$\pi F(\lambda, \alpha) = \frac{r^2}{d^2} \frac{1}{4} S_{11}(\lambda, \alpha) \pi F_0(\lambda)$$

$$\pi Q(\lambda, \alpha) = \frac{r^2}{d^2} \frac{1}{4} S_{21}(\lambda, \alpha) \pi F_0(\lambda)$$

And:

$$P(\lambda, \alpha) = \frac{\sqrt{S_{21}^2(\lambda, \alpha)}}{S_{11}(\lambda, \alpha)} = \frac{S_{21}(\lambda, \alpha)}{S_{11}(\lambda, \alpha)}$$

perpendicular: $P > 0$ parallel: $P < 0$
Hansen & Hovenier [1974] used ground-based polarimetry to derive the size, composition, and altitude of Venus’ cloud particles.

Solar System example: polarimetry of Venus

The degree of linear polarization P of sunlight reflected by Venus as a function of phase angle α, for two different wavelengths λ:

Hansen & Hovenier [1974] used ground-based polarimetry to derive the size, composition, and altitude of Venus’ cloud particles.
The phase angle range at which an exoplanet can be observed depends on the inclination angle i of its orbit:

$$90 - i \leq \alpha \leq 90 + i$$

- $i=0$ for a face-on orbit
- $i=90^\circ$ for an edge-on orbit
Numerical simulations of reflected starlight

Planet models:
- locally plane-parallel atmosphere
- horizontally homogeneous (not required)
- vertically inhomogeneous
- gases, aerosol, cloud particles

Radiative transfer code:
- adding-doubling algorithm
- fluxes and polarization
- single and multiple scattering
- efficient disk-integration algorithm

(for details, see e.g. Stam et al. 2004, 2006, 2008)
The flux and polarization of an exoplanet depend strongly on the single scattering flux and polarization of atmospheric particles:

Single scattering fluxes and polarization

The flux and polarization of an exoplanet depend strongly on the single scattering flux and polarization of atmospheric particles.
Fluxes and polarization as functions of α

The flux and polarization of starlight reflected by 3 Jupiter-like model exoplanets as functions of the phase angle α (Stam et al., 2004):

Atmosphere 1: only gas molecules
Atmosphere 2: gas + tropospheric ice cloud
Atmosphere 3: gas + cloud + stratospheric haze

Red circles: difficult to observe!
Fluxes and polarization as functions of λ

The flux and polarization of starlight reflected by 3 Jupiter-like model exoplanets as functions of the wavelength λ (Stam et al., 2004):

- **Atmosphere 1**: only gas molecules (0.18% CH$_4$)
- **Atmosphere 2**: gas + tropospheric ice cloud
- **Atmosphere 3**: gas + cloud + stratospheric haze
Polarization of the Earth’s zenith sky

Ground-based measurements of P of a cloud-free zenith sky at 3 different solar zenith angles Θ_0 (Aben et al. 1999):

- $\Theta_0 = 80^\circ$
- $\Theta_0 = 65^\circ$
- $\Theta_0 = 60^\circ$

Dit is hoge spectrale resolutie: moeilijk te meten voor exoplaneten omdat je daarvoor veel fotonen nodig hebt!
Fluxes and polarization of exo-Earths

The flux and polarization of starlight reflected by an Earth-like model exoplanet with a purely gaseous atmosphere as functions of α:

The atmosphere’s optical thickness varies approximately from: 1 (@ 300 nm) to 0.1 (@ 500 nm) to 0.01 (@ 1000 nm). The surface reflects unpolarized light and has an albedo of 0.1.
Fluxes and polarization of cloudy exo-Earths

The model atmosphere:

- Rayleigh scattering
- Cloud layer, $\tau=100$
- Almost black surface
Fluxes and polarization of exo-Earths

The flux and polarization of starlight reflected by an Earth-like model exoplanet with a cloud below a gas layer as functions of α:

A gas layer, overlaying a cloud with optical thickness 100.
Spherical cloud droplets, with $r_{\text{eff}}=2.0$ μm, $n_r=1.3$ and $n_i=0.00001$.
The cloud top altitude/optical thickness τ of the gas layer is varied.
A gas layer, overlaying a cloud with optical thickness 100. Spherical cloud droplets, with $r_{\text{eff}}=2.0\ \mu m$, $n_r=1.3$ and $n_i=0.00001$. The optical thickness τ of the gas layer is 0.001.
Which particles make up the clouds?

Polarization signal of a cloudy planet

Single scattering polarization of different types of cloud particles

A: 1.2
B: 1.3
C: 1.4
E: 1.6

All 2 micron sized!
Single scattering by cloud particles

The single scattering polarization phase function of particles depends strongly on their microphysical properties (size, shape, composition):
The rainbow would indicate liquid water on a planet, at least in the clouds. These model planets are completely covered by the clouds. For an Earth, that is not very realistic!
Signals of a realistic Earth-like exoplanet

The Earth is not completely covered by clouds and has liquid water clouds as well as water ice clouds (from Karalidi et al., 2013):
Signals of a realistic Earth-like exoplanet

Using cloud parameter data from an Earth remote-sensing satellite, an Earth-like model planet with a realistic cloud coverage was made:

Earth’s clouds on 25 April 2011 from MODIS data (NASA). The planet is covered by ~63% liquid water clouds (grey), and ~36% ice clouds (white). About 28% of the planet is covered by 2 cloud layers.

Ice clouds can disturb the detection of
Spectral signatures of exo-Earths

The flux and polarization of starlight reflected by Earth-like model exoplanets as functions of the wavelength λ (Stam, 2008):

- **Total flux** ($\alpha=90^\circ$)
- **Degree of polarization** P

Cloud-free planets with surfaces covered by:
- 100% vegetation, 100% ocean, and 30% vegetation + 70% ocean.
- The mixed planet with cloud coverages of 20%, 60%, and 100%.

Ice clouds can disturb the detection of
Polarimeters for exoplanet research

Polarimetry for the direct detection and characterization of exoplanets is a growing field:

- SPHERE/VLT (2013)
- GPI/Gemini South (2013)
- EPICS/E-ELT (202?)
- A space telescope (20??)
A spectropolarimetry for exoplanet research

LOUPE: The Lunar Observatory for Unresolved Polarimetry of Earth

From the moon, we can monitor the whole Earth:
- during its daily rotation
- at phase angles from 0° to 180°
- throughout the seasons
- outside the Earth’s atmosphere

This cannot be done from:
- Low Earth Orbit satellites
- geostationary satellites
- Earth-shine observations
- non-dedicated missions (e.g. Galileo, Venus Express, …)
Still a bit controversial:
- These measurements have not yet been confirmed by other polarimeters.
- To fit the data, this exoplanet should have a very high degree of polarization.
- The model calculations include no multiple scattering of light.
Summary

- Polarimetry appears to be a strong tool for the detection and confirmation of exoplanets
- Polarimetry can help to characterize exoplanetary atmospheres and surfaces because it is very sensitive to their composition and structure, while the reflected flux is far less sensitive

Common sense:
- We will get so few photons from exoplanets, we have to retrieve all the information they carry with them
- When observing polarized light, such as starlight reflected by exoplanets, the telescope and instrument design have to take polarimetry into account even if the science case only calls for total flux measurements!