Arago : stellar UV and visible spectropolarimetry from space

Martin Pertenaïs
Paris Observatory (FR)
IRAP-CNRS, University of Toulouse (FR)

Brussels, 22nd October 2015
Scientific goals

• What is the life cycle of matter? (star formation, evolution and death)
 ✓ ISM Characterization
 ✓ Young (PMS) stars in accretion
 ✓ All kinds of stars (Massive stars, Solar-like stars…)
 ✓ Late stages of evolution (Supergiants, supernovae,…)

• How do stars impact the formation of planets and the emergence of life?
 ✓ Star-Planet interactions (stellar wind, magnetic interaction,…)
 ✓ Space weather (irradiation of the planet by the star,…)

High-resolution UV and Visible spectropolarimetry
Specifications

Preparation for ESA M5 call (deadline April 2016)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral range</td>
<td>[119 nm ; 888 nm] for the spectra [123 nm ; 888 nm] for the polarization</td>
</tr>
<tr>
<td>UV Resolution</td>
<td>25 000</td>
</tr>
<tr>
<td>Visible Resolution</td>
<td>35 000</td>
</tr>
<tr>
<td>S/N</td>
<td>100</td>
</tr>
<tr>
<td>Typical exp. time</td>
<td>30 min (OBA stars, V=7) 1h (FGK stars, V=7)</td>
</tr>
<tr>
<td>Target Magnitude</td>
<td>V=3-10</td>
</tr>
<tr>
<td>V_{rad} accuracy</td>
<td>1 km.s$^{-1}$ (in absolute) 0.1 km.s$^{-1}$ (for magnetic fields measurement)</td>
</tr>
</tbody>
</table>
Telescope

Spec.:

- SNR 100
- V=7 Star
- 30 min exposure time

⇒ 1.3m diameter
Cassegrain telescope
F/13
Spectrograph

Instrument design for M4, will be redesigned for M5
Focal planes

Visible (for M4):
Frame size 30 x 30 mm

UV (for M4): Frame size 120 x 14 mm
Challenge

- Achromatic plates
- Liquid crystal
- Optimized rotating plates

Create an efficient polarimeter from FUV to NIR for a space mission

Spatial modulation
Aim: create a polychromatic polarimetric modulator

- 3 MgF$_2$ stacked wave plates with fast-axis angle and thicknesses:
 \[(\alpha_1,d_1), (\alpha_2,d_2), (\alpha_3,d_3)\]
- Optimization on these 6 variables
- The stack of the 3 plates takes 6 different angular positions (0°, 30°, 60°, 90°, 120°, et 150°)
Polarimeter: baseline

Aim: create a polychromatic polarimetric modulator

- Definition of a demodulation matrix D such as: $S_{in} = D \cdot I_{out}$

- The extraction efficiencies of the Stokes parameters ε_i:

$$\varepsilon_i = \left(\frac{n}{\sum_{j=1}^{n} D_{ij}^2} \right)^{-1/2}$$

- The optimal efficiency for Q, U and V is $\frac{1}{\sqrt{3}} \approx 57.7\%$

- The extraction is achromatized and not the retardance of the plates!

* Optimum modulation and demodulation matrices for solar polarimetry, JC del Toro Inista and Collados (2000)
Polarimeter: baseline
Polarimeter: baseline

\[E(\theta) \]

250\(\mu m\) \[\lambda=123\text{nm} \]
Polarimeter: R&D on a new concept
Concept

\[x = \frac{\Phi}{4\pi \tan(\xi)} \cdot \frac{\lambda}{\Delta n(\lambda)} \]

\[I_{out} = 0.5(I + Q(\cos \Phi \cos 2\theta - \sin \Phi \sin 2\Phi \sin 2\theta) + U \cos 2\Phi \sin 2\theta + V(\cos \Phi \sin 2\Phi \sin 2\theta + \sin \Phi \cos 2\theta)) \]

Sparks et al. (2012)
Pertenais et al. (2015)
Simulation of the image obtained with a synthetic spectrum

- Teff= 30 000K
- Log g = 4.0
- 1000 G dipolar magnetic field

Pertenais et al. (2015)
Star simulation

Retrieved Stokes I and V

Pertenais et al. (2015)
First results

Simulations vs Measurements

Pertenais et al. (2015)
Lab results

![Graph showing polarization angle vs wavelength](image)

Pertenais et al. (2015)
Lab results

Pertenais et al. (2015)
Lab results

± 3×10^{-2} accuracy
Conclusions

• High-resolution spectropolarimetry

• Precise Full Stokes (IQUV) measurement
 – Baseline: polychromatic rotating modulator
 – R&D on innovative polarimeter concept

• From FUV (119 nm) to NIR (888 nm)

• Exciting science!

Thank you for your attention!

Contacts: martin.pertenais@irap.omp.eu
 coralie.neiner@obspm.fr

Acknowledgment: COST Action MP1104
Back-up slides
Tolerancing

- **Relative decenter**

\[\Phi_2 = 2\Phi - \delta\Phi, \quad \text{with} \]

\[\delta\Phi = \frac{8\pi}{\lambda} \tan \xi \Delta n(\lambda) \delta x \]

- **Birefringence uncertainty**

- **Apex angle uncertainty**
Tolerancing

Decenter $\delta x = \pm 0.05$ mm

$I=1, Q=1, U=0, V=0$
Tolerancing

Apex angle $\xi=1.5^\circ \pm 0.25^\circ$

$I=1$, $Q=0$, $U=0$, $V=1$
Issues

- Large orders -> large detectors
- Calibration
- Transmission
 - To limit the number of interfaces:
Birefringence MgF2
To be compared with 40-60% efficiency for polychromatic rotating modulator
Application to Arago

Fourier analysis-> periods of 2π, π et $2\pi/3$

We have to sample at $\pi/3$ (Nyquist) over a 2π signal (to have at least 1 period of the low frequency part)

At the minimal space gap (145nm) with a wedge angle $\xi=1.5^\circ$, a phase difference of $\pi/3$ corresponds to 32µm. On the other side, a phase difference of 2π at 888nm corresponds to 1440µm
If the magnification of the spectro is set to 0.7, we can sample the signal correctly on the detector with 20 µm pixels. This implied an order thickness of $0.7 \times 1.44=1$mm

-> CCD of ~45 mm for the visible
-> 2 MCP detectors of ~85mm for the UV
 (x2 if we want dual-beam ...)

Targets

Legacy survey:
- 5490 stars with $V>3$ and V or $B <6$
- observed twice during the mission
- $\text{SNR} \geq 100$

Mapping of stars and their environment ($3<V<10$):
- Cartography of ~100 stars monitored during a stellar rotation period
- Solar-type stars mapped every year \rightarrow cycle
- SNR = 100 for $V=7$

Focused surveys ($3<V<15$):
- Statistical samples of stars (e.g. O stars, planet-hosting stars, ...)
- observed once each

Target of Opportunity (ToO): supernovae, outbursts, ...
- Observations triggered by external alerts
Observing program

Survey program:
- statistical sample of several thousands stars
- each star is observed twice during the mission → variability
- including a magnitude-limited (B=6) **Legacy** survey
- other samples (50%) chosen through calls for proposals

Mapping program:
- about 100 well-chosen stars (all types,
all evolutionary stages, hosts of exoplanets,...)
- each star is observed during a full rotation period
- → full 3D cartography of its surface and
environment
- from calls for proposal

Target of Opportunity program:
- supernovae
- outbursts of Be stars
- ...

32